7,038 research outputs found

    Confirmation of circumstellar phosphine

    Full text link
    Phosphine (PH3) was tentatively identified a few years ago in the carbon star envelopes IRC+10216 and CRL2688 from observations of an emission line at 266.9 GHz attributable to the J=1-0 rotational transition. We report the detection of the J=2-1 rotational transition of PH3 in IRC+10216 using the HIFI instrument on board Herschel, which definitively confirms the identification of PH3. Radiative transfer calculations indicate that infrared pumping to excited vibrational states plays an important role in the excitation of PH3 in the envelope of IRC+10216, and that the observed lines are consistent with phosphine being formed anywhere between the star and 100 R* from the star, with an abundance of 1e-8 relative to H2. The detection of PH3 challenges chemical models, none of which offers a satisfactory formation scenario. Although PH3 locks just 2 % of the total available phosphorus in IRC+10216, it is together with HCP, one of the major gas phase carriers of phosphorus in the inner circumstellar layers, suggesting that it could be also an important phosphorus species in other astronomical environments. This is the first unambiguous detection of PH3 outside the solar system, and a further step towards a better understanding of the chemistry of phosphorus in space.Comment: Accepted for publication in ApJ Letter

    High-velocity hot CO emission close to Sgr A*: Herschel/HIFI submillimeter spectral survey toward Sgr A*

    Full text link
    The properties of molecular gas, the fuel that forms stars, inside the cavity of the circumnuclear disk (CND) are not well constrained. We present results of a velocity-resolved submillimeter scan (~480 to 1250 GHz}) and [CII]158um line observations carried out with Herschel/HIFI toward Sgr A*; these results are complemented by a ~2'x2' CO (J=3-2) map taken with the IRAM 30 m telescope at ~7'' resolution. We report the presence of high positive-velocity emission (up to about +300 km/s) detected in the wings of CO J=5-4 to 10-9 lines. This wing component is also seen in H2O (1_{1,0}-1_{0,1}) a tracer of hot molecular gas; in [CII]158um, an unambiguous tracer of UV radiation; but not in [CI]492,806 GHz. This first measurement of the high-velocity CO rotational ladder toward Sgr A* adds more evidence that hot molecular gas exists inside the cavity of the CND, relatively close to the supermassive black hole (< 1 pc). Observed by ALMA, this velocity range appears as a collection of CO (J=3-2) cloudlets lying in a very harsh environment that is pervaded by intense UV radiation fields, shocks, and affected by strong gravitational shears. We constrain the physical conditions of the high positive-velocity CO gas component by comparing with non-LTE excitation and radiative transfer models. We infer T_k~400 K to 2000 K for n_H~(0.2-1.0)x10^5 cm^-3. These results point toward the important role of stellar UV radiation, but we show that radiative heating alone cannot explain the excitation of this ~10-60 M_Sun component of hot molecular gas inside the central cavity. Instead, strongly irradiated shocks are promising candidates.Comment: Accepted for publication in A&A Letters ( this v2 includes corrections by language editor

    Collapse, outflows and fragmentation of massive, turbulent and magnetized prestellar barotropic cores

    Get PDF
    Stars and more particularly massive stars, have a drastic impact on galaxy evolution. Yet the conditions in which they form and collapse are still not fully understood. In particular, the influence of the magnetic field on the collapse of massive clumps is relatively unexplored, it is thus of great relevance in the context of the formation of massive stars to investigate its impact. We perform high resolution, MHD simulations of the collapse of hundred solar masses, turbulent and magnetized clouds, using the adaptive mesh refinement code RAMSES. We compute various quantities such as mass distribution, magnetic field and angular momentum within the collapsing core and study the episodic outflows and the fragmentation that occurs during the collapse. The magnetic field has a drastic impact on the cloud evolution. We find that magnetic braking is able to substantially reduce the angular momentum in the inner part of the collapsing cloud. Fast and episodic outflows are being launched with typical velocities of the order of 3-5 km s1^{-1} although the highest velocities can be as high as 30-40 km s1^{-1}. The fragmentation in several objects, is reduced in substantially magnetized clouds with respect to hydrodynamical ones by a factor of the order of 1.5-2. We conclude that magnetic fields have a significant impact on the evolution of massive clumps. In combination with radiation, magnetic fields largely determine the outcome of massive core collapse. We stress that numerical convergence of MHD collapse is a challenging issue. In particular, numerical diffusion appears to be important at high density therefore possibly leading to an over-estimation of the number of fragments.Comment: accepted for publication in A&

    The hyperfine structure in the rotational spectrum of CF+

    Full text link
    Context. CF+ has recently been detected in the Horsehead and Orion Bar photo-dissociation regions. The J=1-0 line in the Horsehead is double-peaked in contrast to other millimeter lines. The origin of this double-peak profile may be kinematic or spectroscopic. Aims. We investigate the effect of hyperfine interactions due to the fluorine nucleus in CF+ on the rotational transitions. Methods. We compute the fluorine spin rotation constant of CF+ using high-level quantum chemical methods and determine the relative positions and intensities of each hyperfine component. This information is used to fit the theoretical hyperfine components to the observed CF+ line profiles, thereby employing the hyperfine fitting method in GILDAS. Results. The fluorine spin rotation constant of CF+ is 229.2 kHz. This way, the double-peaked CF+ line profiles are well fitted by the hyperfine components predicted by the calculations. The unusually large hyperfine splitting of the CF+ line therefore explains the shape of the lines detected in the Horsehead nebula, without invoking intricate kinematics in the UV-illuminated gas.Comment: 2 pages, 1 figure, Accepted for publication in A&

    Systematic uncertainties in the determination of the local dark matter density

    Full text link
    A precise determination of the local dark matter density and an accurate control over the corresponding uncertainties are of paramount importance for Dark Matter (DM) searches. Using very recent high-resolution numerical simulations of a Milky Way like object, we study the systematic uncertainties that affect the determination of the local dark matter density based on dynamical measurements in the Galaxy. In particular, extracting from the simulation with baryons the orientation of the Galactic stellar disk with respect to the DM distribution, we study the DM density for an observer located at \sim8 kpc from the Galactic center {\it on the stellar disk}, ρ0\rho_0. This quantity is found to be always larger than the average density in a spherical shell of same radius ρˉ0\bar{\rho}_0, which is the quantity inferred from dynamical measurements in the Galaxy, and to vary in the range ρ0/ρˉ0=1.011.41\rho_0/\bar{\rho}_0=1.01-1.41. This suggests that the actual dark matter density in the solar neighbourhood is on average 21\% larger than the value inferred from most dynamical measurements, and that the associated systematic errors are larger than the statistical errors recently discussed in the literature.Comment: 6 pages, 3 figures, matches published versio

    Optical spectroscopy and the nature of the insulating state of rare-earth nickelates

    Full text link
    Using a combination of spectroscopic ellipsometry and DC transport measurements, we determine the temperature dependence of the optical conductivity of NdNiO3_3 and SmNiO3_{3} films. The optical spectra show the appearance of a characteristic two-peak structure in the near-infrared when the material passes from the metal to the insulator phase. Dynamical mean-field theory calculations confirm this two-peak structure, and allow to identify these spectral changes and the associated changes in the electronic structure. We demonstrate that the insulating phase in these compounds and the associated characteristic two-peak structure are due to the combined effect of bond-disproportionation and Mott physics associated with half of the disproportionated sites. We also provide insights into the structure of excited states above the gap.Comment: 12 pages, 13 figure

    Polarisation Observations of H2_{2}O JK1K1=532441J_{K_{-1}K_{1}} = 5_{32} - 4_{41} 620.701 GHz Maser Emission with Herschel/HIFI in Orion KL

    Full text link
    Context. The high intensities and narrow bandwidths exhibited by some astronomical masers make them ideal tools for studying star-forming giant molecular clouds. The water maser transition JK1K1=532441J_{K_{-1}K_{1}}=5_{32}-4_{41} at 620.701 GHz can only be observed from above Earth's strongly absorbing atmosphere; its emission has recently been detected from space. Aims. We sought to further characterize the star-forming environment of Orion KL by investigating the linear polarisation of a source emitting a narrow 620.701 GHz maser feature with the heterodyne spectrometer HIFI on board the Herschel Space Observatory. Methods. High-resolution spectral datasets were collected over a thirteen month period beginning in 2011 March, to establish not only the linear polarisation but also the temporal variability of the source. Results. Within a 3σ3\sigma uncertainty, no polarisation was detected to an upper limit of approximately 2%. These results are compared with coeval linear polarisation measurements of the 22.235 GHz JK1K1=616523J_{K_{-1}K_{1}}=6_{16}-5_{23} maser line from the Effelsberg 100-m radio telescope, typically a much stronger maser transition. Although strongly polarised emission is observed for one component of the 22.235 GHz maser at 7.2 km s1^{-1}, a weaker component at the same velocity as the 620.701 GHz maser at 11.7 km s1^{-1} is much less polarised.Comment: Accepted for publication in A&

    Generalized Permutohedra from Probabilistic Graphical Models

    Get PDF
    A graphical model encodes conditional independence relations via the Markov properties. For an undirected graph these conditional independence relations can be represented by a simple polytope known as the graph associahedron, which can be constructed as a Minkowski sum of standard simplices. There is an analogous polytope for conditional independence relations coming from a regular Gaussian model, and it can be defined using multiinformation or relative entropy. For directed acyclic graphical models and also for mixed graphical models containing undirected, directed and bidirected edges, we give a construction of this polytope, up to equivalence of normal fans, as a Minkowski sum of matroid polytopes. Finally, we apply this geometric insight to construct a new ordering-based search algorithm for causal inference via directed acyclic graphical models.Comment: Appendix B is expanded. Final version to appear in SIAM J. Discrete Mat

    BiTeCl and BiTeBr: a comparative high-pressure optical study

    Full text link
    We here report a detailed high-pressure infrared transmission study of BiTeCl and BiTeBr. We follow the evolution of two band transitions: the optical excitation β\beta between two Rashba-split conduction bands, and the absorption γ\gamma across the band gap. In the low pressure range, p<4p< 4~GPa, for both compounds β\beta is approximately constant with pressure and γ\gamma decreases, in agreement with band structure calculations. In BiTeCl, a clear pressure-induced phase transition at 6~GPa leads to a different ground state. For BiTeBr, the pressure evolution is more subtle, and we discuss the possibility of closing and reopening of the band gap. Our data is consistent with a Weyl phase in BiTeBr at 5-6~GPa, followed by the onset of a structural phase transition at 7~GPa.Comment: are welcom

    Nitrogen isotopic ratios in Barnard 1: a consistent study of the N2H+, NH3, CN, HCN and HNC isotopologues

    Full text link
    The 15N isotopologue abundance ratio measured today in different bodies of the solar system is thought to be connected to 15N-fractionation effects that would have occured in the protosolar nebula. The present study aims at putting constraints on the degree of 15N-fractionation that occurs during the prestellar phase, through observations of D, 13C and 15N-substituted isotopologues towards B1b. Both molecules from the nitrogen hydride family, i.e. N2H+ and NH3, and from the nitrile family, i.e. HCN, HNC and CN, are considered in the analysis. As a first step, we model the continuum emission in order to derive the physical structure of the cloud, i.e. gas temperature and H2 density. These parameters are subsequently used as an input in a non-local radiative transfer model to infer the radial abundances profiles of the various molecules. Our modeling shows that all the molecules are affected by depletion onto dust grains, in the region that encompasses the B1-bS and B1-bN cores. While high levels of deuterium fractionation are derived, we conclude that no fractionation occurs in the case of the nitrogen chemistry. Independently of the chemical family, the molecular abundances are consistent with 14N/15N~300, a value representative of the elemental atomic abundances of the parental gas. The inefficiency of the 15N-fractionation effects in the B1b region can be linked to the relatively high gas temperature ~17K which is representative of the innermost part of the cloud. Since this region shows signs of depletion onto dust grains, we can not exclude the possibility that the molecules were previously enriched in 15N, earlier in the B1b history, and that such an enrichment could have been incorporated into the ice mantles. It is thus necessary to repeat this kind of study in colder sources to test such a possibility.Comment: accepted in A&
    corecore